Coordinator: Prof. Antonio Vicino
Home |  DIISM |   | Login Privacy e Cookie policy



Compressive Sampling


Enrico Magli
Politecnico di Torino
Course Type
Type B
Lunedì 7 Maggio: 14.30 - 17.30 Aula 20
Martedì 8 Maggio: 10.00 - 13.00 Aula 15
Mercoledì 9 Maggio: 10.00 - 13.00 Aula 4
Giovedì 10 Maggio: 10.00 - 13.00 Aula 4
Venerdì 11 Maggio: 10.00 - 13.00 Lab. 146
This course covers the topic of compressive sampling, an innovative signal sampling and representation paradigm that is significantly more efficient than conventional sampling as described by Shannon’s theorem. Compressive sampling represents a signal through a small set of linear projections of the signal samples; the original samples can be reconstructed via a nonlinear process. This very compact representation has many potential advantages in the areas of signal acquisition and communication, as well as visual information processing. The course will address the theory of compressive sampling and its practical applications. It will involve 15 hours, divided into 12 hours of lectures and 3 hours of computer labs using Matlab, where the students will become familiar with compressive sampling algorithms using a hands-on approach. The lectures will cover both theory and applications. The course will start with the introduction of the mathematical aspects of compressive sampling, including deterministic reconstruction conditions, the restricted isometry property, and reconstruction algorithms such as basis pursuit, orthogonal matching pursuit, and iterative thresholding. After that, the course will address a few key applications of compressive sampling, with particular regard to communications, applications to visual signals, and implementation aspects.



PhD Students/Alumni

Dip. Ingegneria dell'Informazione e Scienze Matematiche - Via Roma, 56 53100 SIENA - Italy